top of page

Rank and Draft Smarter: Value Model for GameDay Squad and AFL Fantasy - 2026


AFL players

Every season in GameDay Squad, AFL Fantasy and Supercoach the same question comes up:

“How do I actually compare players across positions, card rarities, age profiles and salary cap?”

Raw averages don’t cut it.Price tags lie.And scarcity is real — whether the platform likes it or not.

So we built a model.


This model incorporates no opinions on how a player will do, what will happen if they have moved clubs or any other intangible not reflected in the numbers. So there are players like flanders that are low down this list that what the opinion of them this, nic martin is high despite his ACL. This is purely numbers as a jumping off point.


This is the BOBs GDS Card Value Model — a framework designed to rank every relevant player in the pool while accounting for performance, age, scarcity, salary cap efficiency, and card rarity. It’s not about picking names. It’s about understanding value.

Below is how it works, step by step.


Rank and Draft Smarter: Value Model for GameDay Squad and AFL Fantasy - 2026


Start With the Only Thing That Matters: Scoring

At its core, Fantasy is a scoring game. Everything else is a constraint layered on top.

For every player in the model, we start with three seasons of fantasy scoring:

  • 2023 average

  • 2024 average

  • 2025 average

If a player missed a season (injury, debut year, role change), we don’t punish or inflate them artificially. Instead:

👉 Any missing season is filled using that player’s own multi-year average

Why?

  • It avoids small-sample traps

  • It stops injury seasons nuking value

  • It keeps rookies and mid-career movers usable in the model

Once this is done, every player has a clean 3-year scoring profile.


Weighted Averages: Recent Form > Old History

Not all seasons are created equal.

We weight scoring to reflect how fantasy actually works — recency matters:

  • 2025 = 65%

  • 2024 = 25%

  • 2023 = 10%

This creates a Weighted Average that:

  • Rewards players who are currently elite

  • Keeps proven stars relevant

  • Softens the impact of one-off career years

This is the backbone of the model — everything else builds off this number.


Age Adjustment: Development, Prime, Decline

Next comes age — and this is where most fantasy models get lazy.

We don’t.


The Age Curve

  • 21 and under → no decay (growth baked in elsewhere)

  • 22–30 → 2% decline per year (compounded) this accounts for playable years for cards and in draft keeper models

  • 31+ → 4% decline per year (compounded)

Why compounded?Because decline isn’t linear. Once it starts, it accelerates.

This produces an Age Multiplier, applied directly to the Weighted Average:

Age-Adjusted Score = Weighted Average × Age Multiplier

This means:

  • Young stars aren’t penalised

  • Prime-age guns are rewarded

  • Veterans need elite scoring to hold value

No vibes. No narratives. Just math.


Scarcity: Why Position Actually Matters

Here’s the uncomfortable truth:

A 95-average ruck is more valuable than a 95-average mid.

Why?Because you can’t replace them.

Scarcity in this model is position-based, not vibes-based.


How Scarcity Is Defined

  • Top 15 players per position (DEF / MID / FWD)

  • Top 4 players for RUCKS (because that’s the reality of the pool)

Scarcity is assessed within each position, not across the entire competition.


This produces a Scarcity Multiplier that:

  • Rewards players who separate from the pack

  • Identifies positional cliffs

  • Stops midfield depth from drowning out elite defenders and rucks

When applied, we get:

Scarcity-Adjusted Value = Age-Adjusted Score × Scarcity Multiplier

This is the number the model ultimately ranks.


5️⃣ Final Rankings: One Board, All Players

Once scarcity is applied, every player is ranked together.

That’s the key point.

Not “best mid”.Not “best ruck”.Not “best forward”.

Just:

Who provides the most value in a constrained GDS environment?

The result is a single, unified ranking that:

  • Exposes the top cards

  • Highlights under-owned value due to opinion

  • Shows where positional drop-offs actually occur


Rank and Draft Smarter: Value Model for GameDay Squad and AFL Fantasy - 2026. This is the list you draft from: Top 100



Player

Age

Position

2023

2024

2025

Average

Weighted_Average

Age Decay

Age Adjusted

Pos Baseline

Scarcity X

Scarcity_Adjusted

Rank

Harry Sheezel

21

FWD

97.3

112.1

109.2

106.2

108.7

1

108.7

77.13333333

1.409

153.2

1

Nasiah Wanganeen-Milera

22

DEF

91.5

97.7

110.8

100

105.6

0.98

103.5

81.62666667

1.268

131.2

2

Nick Daicos

22

MID

108.4

104.7

106.9

106.7

106.5

0.98

104.4

94.08666667

1.11

115.9

3

Nic Martin

24

FWD

85.2

107.2

97.4

96.6

98.6

0.941

92.8

77.13333333

1.203

111.6

4

Connor Rozee

25

DEF

103.5

95.7

104.1

101.1

101.9

0.922

94

81.62666667

1.152

108.3

5

Errol Gulden

23

MID

112.3

106.8

102.3

107.1

104.4

0.96

100.2

94.08666667

1.065

106.8

6

Tim English

28

RUC

118.7

103.9

110.7

111.1

109.8

0.868

95.3

91.3

1.044

99.5

7

Bailey Smith

25

MID

83.3

99.15

115

99.2

107.9

0.922

99.5

94.08666667

1

99.5

8

Tristan Xerri

26

RUC

66

114.5

105

95.2

103.5

0.904

93.6

91.3

1.025

95.8

9

Noah Anderson

24

MID

100.5

104

99.3

101.3

100.6

0.941

94.7

94.08666667

1.007

95.4

10

Jordan Dawson

28

MID

113.4

105.3

108.9

109.2

108.5

0.868

94.2

94.08666667

1

94.1

11

Max Holmes

23

MID

75.9

94.3

102.7

91

97.9

0.96

94

94.08666667

1

94

12

Will Ashcroft

21

MID

82.9

86.6

98.4

89.3

93.9

1

93.9

94.08666667

1

93.9

13

Tom Green

24

MID

108.7

99.8

97.5

102

99.2

0.941

93.3

94.08666667

1

93.3

14

Andrew Brayshaw

26

MID

110.3

104.6

101.6

105.5

103.2

0.904

93.3

94.08666667

1

93.3

15

Josh Dunkley

28

MID

102.7

105.6

108.4

105.6

107.1

0.868

93

94.08666667

1

93

16

Matt Rowell

24

MID

92

93.7

101.5

95.7

98.6

0.941

92.8

94.08666667

1

92.8

17

Caleb Serong

24

MID

108.1

104

94.3

102.1

98.1

0.941

92.3

94.08666667

1

92.3

18

Zak Butters

25

MID

100

100.5

99.9

100.1

100.1

0.922

92.3

94.08666667

1

92.3

19

Lachie Ash

24

DEF

84.8

75.8

99.6

86.7

92.2

0.941

86.8

81.62666667

1.063

92.2

20

Marcus Bontempelli

30

MID

117

105.9

111.3

111.4

110.5

0.834

92.2

94.08666667

1

92.2

21

Rowan Marshall

30

RUC

116.8

117.1

105.8

113.2

109.7

0.834

91.5

91.3

1.002

91.7

22

Jye Caldwell

25

MID

75.1

94.5

103.6

91.1

98.5

0.922

90.8

94.08666667

1

90.8

23

Finn Callaghan

22

MID

73

76.3

100.6

83.3

91.8

0.98

90

94.08666667

1

89.9

24

Sam Walsh

25

MID

97.9

105.3

93.1

98.8

96.6

0.922

89.1

94.08666667

1

89.1

25

Hugh McCluggage

27

MID

88.8

98.2

101.6

96.2

99.5

0.886

88.2

94.08666667

1

88.1

26

Zach Merrett

30

MID

112.9

108.7

102.8

108.1

105.3

0.834

87.8

94.08666667

1

87.8

27

Lachie Whitfield

31

DEF

95.8

109.6

105.9

103.8

105.8

0.8

84.6

81.62666667

1.036

87.7

28

Jack Sinclair

30

DEF

102.1

101.9

100.7

101.6

101.1

0.834

84.3

81.62666667

1.033

87.2

29

Archie Roberts

20

DEF

85.45

85

85.9

85.4

85.6

1

85.6

81.62666667

1

85.6

30

Tim Taranto

27

MID

112.4

95.5

93.9

100.6

96.2

0.886

85.2

94.08666667

1

85.2

31

Gryan Miers

26

FWD

75.5

87

92.8

85.1

89.6

0.904

81

77.13333333

1.05

85

32

Luke Jackson

24

RUC

84.7

78.7

95.3

86.2

90.1

0.941

84.8

91.3

1

84.8

33

Josh Daicos

27

DEF

90

94.8

94

92.9

93.8

0.886

83.1

81.62666667

1.018

84.6

34

Chad Warner

24

MID

92.5

93

88.1

91.2

89.8

0.941

84.5

94.08666667

1

84.5

35

Jordan Clark

25

DEF

76.5

96.9

89.4

87.6

90

0.922

83

81.62666667

1.017

84.4

36

Nic Newman

30

DEF

97.9

102.1

100

100

100.3

0.834

83.7

81.62666667

1

83.7

37

Ed Richards

26

MID

79.8

84.9

96.7

87.1

92.1

0.904

83.3

94.08666667

1

83.2

38

Isaac Heeney

29

MID

79.4

104.5

96.9

93.6

97.1

0.851

82.6

94.08666667

1

82.6

39

Jai Newcombe

24

MID

93.3

88.3

86.5

89.4

87.6

0.941

82.4

94.08666667

1

82.5

40

Jack Steele

30

MID

98.6

106.6

95.9

100.4

98.8

0.834

82.4

94.08666667

1

82.4

41

Luke Davies-Uniacke

26

MID

97.4

95.9

87.7

93.7

90.7

0.904

82

94.08666667

1

82

42

Darcy Cameron

30

RUC

82.5

96.2

101.2

93.3

98.1

0.834

81.8

91.3

1

81.8

43

Brodie Grundy

31

RUC

75

96

107

92.7

101

0.8

80.8

91.3

1

80.8

44

Adam Cerra

26

MID

94.9

72.5

95.1

87.5

89.4

0.904

80.8

94.08666667

1

80.8

45

Jason Horne-Francis

22

MID

67.8

87.6

82.2

79.2

82.1

0.98

80.5

94.08666667

1

80.5

46

Colby McKercher

20

DEF

80.4

82.3

78.5

80.4

79.6

1

79.6

81.62666667

1

79.6

47

Will Day

24

MID

95.3

74.1

86.8

85.4

84.5

0.941

79.5

94.08666667

1

79.5

48

Lloyd Meek

27

RUC

59.4

90.6

93.8

81.3

89.6

0.886

79.4

91.3

1

79.4

49

Christian Petracca

29

FWD

104.7

90

90.4

95

91.7

0.851

78

77.13333333

1.011

79

50

Matt Roberts

22

DEF

78.8

74.9

82.7

78.8

80.4

0.98

78.8

81.62666667

1

78.8

51

Tom Powell

23

MID

57.4

78.7

86.9

74.3

81.9

0.96

78.6

94.08666667

1

78.6

52

Sam Darcy

22

FWD

78.8

75.4

82.2

78.8

80.2

0.98

78.6

77.13333333

1

78.6

53

Touk Miller

29

MID

96.2

93.1

91.5

93.6

92.4

0.851

78.6

94.08666667

1

78.6

54

Max Gawn

34

RUC

93.5

111.8

113.3

106.2

110.9

0.708

78.5

91.3

1

78.5

55

Izak Rankine

25

FWD

74.2

79.8

87.2

80.4

84.1

0.922

77.5

77.13333333

1.005

77.9

56

Bailey Dale

29

DEF

85.3

91.5

92

89.6

91.2

0.851

77.6

81.62666667

1

77.6

57

Clayton Oliver

28

MID

115.1

77.7

89.7

94.2

89.2

0.868

77.4

94.08666667

1

77.5

58

George Hewett

30

MID

73.8

84.2

98.9

85.6

92.7

0.834

77.3

94.08666667

1

77.3

59

Jake Soligo

22

MID

67.6

76.9

81.4

75.3

78.9

0.98

77.3

94.08666667

1

77.3

60

Darcy Parish

28

MID

106.9

91.6

85.3

94.6

89

0.868

77.3

94.08666667

1

77.3

61

Tom McCarthy

25

DEF

83.5

83.5

83.5

83.5

83.5

0.922

77

81.62666667

1

77

62

Dylan Moore

26

FWD

88

91.6

82

87.2

85

0.904

76.8

77.13333333

1

76.8

63

Trent Rivers

24

DEF

74.7

82

82.4

79.7

81.5

0.941

76.7

81.62666667

1

76.7

64

Matthew Kennedy

28

MID

70

74.8

96.5

80.4

88.4

0.868

76.7

94.08666667

1

76.7

65

Patrick Cripps

30

MID

87.5

99.6

88.8

92

91.4

0.834

76.2

94.08666667

1

76.2

66

Nick Blakey

25

DEF

71.6

80.2

85

78.9

82.5

0.922

76.1

81.62666667

1

76

67

Toby Nankervis

31

RUC

102.3

100.6

91.1

98

94.6

0.8

75.7

91.3

1

75.7

68

Luke Ryan

29

DEF

99.4

102.1

82.3

94.6

89

0.851

75.7

81.62666667

1

75.7

69

Marcus Windhager

22

MID

62.4

70.4

82

71.6

77.1

0.98

75.6

94.08666667

1

75.6

70

Darcy Wilmot

22

DEF

61.7

73.5

80.6

71.9

76.9

0.98

75.4

81.62666667

1

75.4

71

Tom De Koning

26

RUC

66.1

86.2

84.7

79

83.2

0.904

75.2

91.3

1

75.2

72

Jake Bowey

23

DEF

62.7

62.5

86.4

70.5

78.1

0.96

75

81.62666667

1

74.9

73

Kysaiah Pickett

24

FWD

63.3

66

87.3

72.2

79.6

0.941

74.9

77.13333333

1

74.9

74

Sam Flanders

24

FWD

89.6

107.8

67.2

88.2

79.6

0.941

74.9

77.13333333

1

74.9

75

Reilly O'Brien

30

RUC

88.4

91

89.4

89.6

89.7

0.834

74.8

91.3

1

74.8

76

Jaspa Fletcher

21

DEF

52.4

60

83.7

65.4

74.6

1

74.6

81.62666667

1

74.6

77

Mason Redman

28

DEF

86

83.9

85.8

85.2

85.3

0.868

74

81.62666667

1

74.1

78

Rory Laird

32

DEF

109.2

99.3

93.2

100.6

96.3

0.768

74

81.62666667

1

74

79

James Rowbottom

25

MID

78

85.1

78.5

80.5

80.1

0.922

73.9

94.08666667

1

73.9

80

John Noble

28

DEF

81

74.4

89.9

81.8

85.1

0.868

73.9

81.62666667

1

73.9

81

Lachie Neale

32

MID

94.6

100.4

94.3

96.4

95.9

0.768

73.7

94.08666667

1

73.6

82

Jase Burgoyne

22

DEF

75.8

77.4

74.2

75.8

75.2

0.98

73.7

81.62666667

1

73.7

83

Christian Salem

30

DEF

76.6

80.3

93

83.3

88.2

0.834

73.6

81.62666667

1

73.5

84

Ewan Mackinlay

22

MID

75

75

75

75

75

0.98

73.5

94.08666667

1

73.5

85

Sam Durham

24

MID

63

83

78.4

74.8

78

0.941

73.4

94.08666667

1

73.4

86

Jarrod Berry

27

MID

72.3

85

83.7

80.3

82.9

0.886

73.4

94.08666667

1

73.4

87

Callum Mills

28

DEF

84.3

70.6

90

81.6

84.6

0.868

73.4

81.62666667

1

73.4

88

Riley Thilthorpe

23

FWD

52.9

68.3

83.2

68.1

76.4

0.96

73.3

77.13333333

1

73.4

89

Jayden Short

29

DEF

92.5

80.5

87

86.7

85.9

0.851

73.1

81.62666667

1

73.1

90

Shaun Mannagh

28

FWD

81.35

75.7

87

81.4

83.6

0.868

72.6

77.13333333

1

72.6

91

Karl Amon

30

DEF

86.8

86.5

87.4

86.9

87.1

0.834

72.6

81.62666667

1

72.7

92

Jacob Hopper

28

MID

80.8

82.5

84.3

82.5

83.5

0.868

72.5

94.08666667

1

72.5

93

Jordon Sweet

27

RUC

82.1

82.8

81.4

82.1

81.8

0.886

72.5

91.3

1

72.5

94

Zach Reid

23

DEF

75.4

75.4

75.4

75.4

75.4

0.96

72.4

81.62666667

1

72.4

95

Levi Ashcroft

19

MID

72.2

72.2

72.2

72.2

72.2

1

72.2

94.08666667

1

72.2

96

Xavier Duursma

25

MID

65.1

81.8

78.8

75.2

78.2

0.922

72.1

94.08666667

1

72.1

97

Oliver Dempsey

22

MID

73.25

72.4

74.1

73.2

73.6

0.98

72.1

94.08666667

1

72.1

98

Zac Bailey

26

FWD

71.1

69.5

85

75.2

79.7

0.904

72

77.13333333

1

72.1

99




The Big Takeaway

This model isn’t about predicting the future perfectly.

It’s about making better decisions under constraints:

  • Salary cap

  • Card supply

  • Positional scarcity

  • Age curves

  • Draft formats

If two players score the same but one:

  • costs less cap

  • has a higher multiplier

  • plays a scarcer position

…then one is clearly better value.


This model just makes that obvious.

And that’s the goal.

Comments

Rated 0 out of 5 stars.
No ratings yet

Add a rating
bottom of page